An Update of COVID-19 Diagnostics

July 9, 2020
Yukari C. Manabe, MD,
Division of ID, Department of Medicine, Johns Hopkins University School of Medicine
Associate Director of Global Health Research and Innovation, Johns Hopkins Center for Global Health
As of July 7, 2020 11,645,109 Cases

538,780 Deaths

https://coronavirus.jhu.edu/map.html
Automated Molecular Testing Platforms
(March 12-present)

16 automated integrated diagnostic tests for SARS-CoV-2 testing, 5 modular cartridge based devices (4 of which are designed to be used at POC)

- **Cepheid Xpert Xpress**
 - **45 minutes**
 - Massive global penetration due to TB usage and concessional pricing

- **bioMerieux Biofire Filmarray**
 - **1 hour**
 - Has been used internationally for acute febrile illness and respiratory infection

- **Abbott ID NOW**
 - **13 minutes**
 - Sensitivity lower with VTM
 - Direct inoculation of swab
 - Popular in US for flu
 - Isothermal amplification RdRp

- **Mesa Biotech Accula**
 - **30 minutes**
 - No international usage
CRISPR-Based Tests: SHERLOCK and DETECTR
(Specific High-sensitivity Enzymatic Reporter unlocking/DNA Endonuclease-Targeted CRISPR Trans Reporter)

Cas 12a/13a RNA-guided DNAse – collateral ssDNA cleavage after target recognition
‘One Pot’ reactions that use thermostable CRISPR enzyme (AapCas12b), LAMP, LFA

Broughton JP Nature Biotech 38;p 870-4; Ding X et al., Guo et al., Lucia et al.
https://www.medrxiv.org/content/10.1101/2020.05.04.20091231v1.full.pdf
Antigen Assays: Sofia®2 SARS Antigen FIA

- Lateral flow immunofluorescent sandwich assay – 15 minutes
- Qualitative detection of SARS-CoV-2 nucleocapsid protein antigen in nasopharyngeal or nasal swabs directly or in VTM
- Does not distinguish between SARS-CoV and SARS-CoV-2
- Clinical sensitivity 80% (47/59) compared to EUA molecular device
- Clinical specificity 100% (84/84)
- No cross-reactivity with 79 specimens containing seasonal CoVs

Many more coming, though likely to have similar sensitivities, amenable to lateral flow RDT
Sample Types

- Nasal, nasopharyngeal, mid-turbinate: 10^6-10^9 copies/swab
- Throat (oropharyngeal): 10^4-10^8 copies/swab
- Sputum: 10^6-10^{11} copies/ml
- Stool: 10^4-10^8 copies/g
- Blood: <5% positive
- Urine: not detectable

Weissleder R et al. Science Transl Med DOI: 10.1126/scitranslmed.abc1931
RT-PCR Performance Characteristics

• Similar sensitivity across automated, molecular platforms
• Variability occurs with sample type, timing during illness, quality of sample
 • Passive drool – similar range of cycle thresholds to NP swab, 2 positive salivary results on days when NP or Bronchoalveolar swab negative
 • Saliva – “coughed up by clearing the throat”

Azzi L. J Infect https://doi.org/10.1016/j.jinf.2020.04.005
To KKW Lancet Infect Dis https://doi.org/10.1016/S1473-3099(20)30196-1
Sample Type: Saliva superior to NP swab?

46 NP, 39 saliva (repeated spitting into a urine cup 1/3 full) – more sensitive, less variability

Wyllie A. https://www.medrxiv.org/content/10.1101/2020.04.16.20067835v1
Duration of RT-PCR positivity

Azamfirei R unpublished
RT-PCR Positive vs Culture Positive

How does RT-PCR positivity link with culture positivity? In turn, how does that link with transmissibility?

Wölfel R Nature 2020 doi: 10.1038/s41586-020-2196-x

Cultures negative when specimen obtained later OR with lower level or RNA

Details:
Manitoba, Canada
90 specimens
NP swabs and ETT specimens
E gene RT-PCR (single target)
Vero cell culture, CPE readout @ 4days

Repeated positive after symptomatic recovery: Korean CDC analysis of ‘re-positive’ cases

https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030&act=view&list_no=367267&nPage=1
Korean CDC: Findings from investigation and analysis of re-positive cases

SUMMARY

- Epidemiological investigation and contact investigation of 285 re-positive cases
- 60% tested as screening, others tested for symptom onset. Of the 284 cases for which symptoms were investigated, 126 (45%) were symptomatic.
- From the 285 re-positive cases, a total of 790 contacts were identified (351=family; 439=others). From the monitoring of contacts, as of now, no case has been found that was newly confirmed from exposure during re-positive period alone.

https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030&act=view&list_no=367267&nPage=1
Declare the past, diagnose the present, foretell the future

-Hippocrates
Lessons from the 1918 Influenza Epidemic

- Study of weekly pneumonia and influenza mortality data for 43 US cities (1922, 22% of current US population)
- Nonpharmaceutical interventions
 - School Closure
 - Public Gathering Bans
 - Isolation and Quarantine

Lessons from the 1918 Influenza Epidemic

Reacted early
Sustained and rigid enforcement of isolation (hospital/facility) and quarantine procedures
Staggered business hour ordinance

Lessons from the 1918 Influenza Epidemic

2 peaks due to non-sustained response

Delayed school closure
Rescinded public gathering ban
Highest cumulative excess mortality

Lessons from the 1918 Influenza Epidemic

- Sustained implementation of multiple interventions → peak death rates ~50% lower than those that did not.
- Death rates climbed if interventions were lifted too early.
- “Second waves”: inverse correlation of height of first and second peak weekly mortality rates.
 - Cities with low first wave peaks at greater risk of large second wave
 - Low first wave peak cities experiences second wave sooner: 6-9 weeks after the first peak vs 10-14 weeks for cities with higher first peak mortality rates
- No city experienced a second wave with the main non-pharmaceutical battery in place.

Michael Melia and Natasha Chida COVID Rounds Johns Hopkins CCGHE
US COVID-19 Cases
(as of July 5, 2020)

Serologic Immune Responses in Convalescent Patients

• Klein et al. 126 convalescent plasma potential donors ≥ 28 days after RT-PCR confirmed infection, IgG titers predominated (S1, full length S, S-RBD)
 • 80% with neutralizing titers
 • S-RBD IgG AUC had highest correlation with neutralizing titer AUC (0.79)
 • Male sex, older age, hospitalization with COVID-19 associated with increase antibody responses

Klein S et al. https://www.medrxiv.org/content/10.1101/2020.06.26.20139063v1
Superior doctors prevent the disease
Mediocre doctors treat the disease before evident
Inferior doctors treat the full-blown disease

-Huang Dee Nai-Chang 2600 BC
SARS-CoV-2 Superpower: Asymptomatic Presymptomatic Infection

Epidemiologic evidence

- Incubation periods for presymptomatic primary patients with distinct exposures ranged from 3-11 days
- Presymptomatic primary patients with travel history to an area with active transmission, the time from last exposure to symptom ≥2 - >9 days

Virologic Evidence

- Mean RT-PCR CT value 24.2 presymptomatic, 27.3 for asymptomatic. Viral culture positive 64% presymptomatic, none in asymptomatic (Arons et al.)
- 2 of 116 asymptomatic passengers from Wuhan to Germany were RT-PCR positive and Caco-2 cell positive

Arons M et al. NEJM DOI: 10.1056/NEJMoa2008457
Furukawa NW https://wwwnc.cdc.gov/eid/article/26/7/20-1595_article#r23
Modeling Transmission

- Total $R_0=2.0$
- Presymptomatic $R_0=0.9$
- Symptomatic $R_0=0.8$
- Environmental $R_0=0.1$

Implications

- Lower case-fatality rate
- Community interventions to slow transmission – social distance, face masks
- Increase capacity for widespread testing and contact tracing for asymptomatics

Ferretti L Science. 2020;eabb6936
Non-Pharmaceutical Interventions

<table>
<thead>
<tr>
<th>Studies and participants</th>
<th>Relative effect (95% CI)</th>
<th>Anticipated absolute effect (95% CI), eg, chance of viral infection or transmission</th>
<th>Difference (95% CI)</th>
<th>Certainty</th>
<th>What happens (standardised GRADE terminology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical distance ≥1 m vs <1 m</td>
<td>Nine adjusted studies (n=7782); 29 unadjusted studies (n=10736)</td>
<td>aOR 0.18 (0.09 to 0.38); unadjusted RR 0.30 (95% CI 0.20 to 0.44)</td>
<td>Shorter distance, 12.8%; Further distance, 2.6% (1.3 to 5.3)</td>
<td>-10.2% (-11.5 to -7.5)</td>
<td>Moderate†</td>
</tr>
<tr>
<td>Face mask vs no face mask</td>
<td>Ten adjusted studies (n=2647); 29 unadjusted studies (n=10170)</td>
<td>aOR 0.15 (0.07 to 0.34); unadjusted RR 0.34 (95% CI 0.26 to 0.45)</td>
<td>No face mask, 17.4%; Face mask, 3.1% (1.5 to 6.7)</td>
<td>-14.3% (-15.9 to -10.7)</td>
<td>Low‡</td>
</tr>
<tr>
<td>Eye protection (faceshield, goggles) vs no eye protection</td>
<td>13 unadjusted studies (n=3713)</td>
<td>Unadjusted RR 0.34 (0.22 to 0.52)</td>
<td>No eye protection, 16.0%; Eye protection, 5.5% (3.6 to 8.5)</td>
<td>-10.6% (-12.5 to -7.7)</td>
<td>Low</td>
</tr>
</tbody>
</table>

Chu DK Lancet 2020 https://doi.org/10.1016/S0140-6736(20)31142-9
Surveillance Testing Modeling: Impact of the sensitivity of the test used is minimal

https://www.medrxiv.org/content/10.1101/2020.06.22.20136309v2.full.pdf
Summary

• COVID-19 pandemic → over 11 million cases worldwide with evidence of sustained transmission particularly in the US
• Molecular (RT-PCR) and antigen tests directly detect the virus
• Relationship between RT-PCR positivity, culturable virus, and transmission need more data
• Only 80% of patients develop neutralizing immunity and the duration of protection is unknown
• Asymptomatic and presymptomatic patients account for a significant proportion of transmitted infection → diagnosing these people is key
• Social distancing, masking, and non-pharmaceutical interventions should be adopted